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Abstract. We present predictions for the K−α scattering length obtained within the framework of the
multiple-scattering approach. Evaluating the pole position of theK−α scattering amplitude within the zero-
range approximation, we find a loosely bound K−α state with a binding energy of ER = −2, . . . ,−7 MeV
and a width ΓR = 11, . . . , 18 MeV. We propose to measure the K−α scattering length through the final-
state interaction between the α and K−-meson produced in the reaction dd → αK+K−. It is found that
the K−α invariant-mass distribution from this reaction at energies near the threshold provides a new tool
to determine the s-wave K−α scattering length.

PACS. 25.10.+s Nuclear reactions involving few-nucleon systems – 13.75.-n Hadron-induced low- and
intermediate-energy reactions and scattering (energy ≤ 10 GeV)

1 Introduction

Low-energy K̄N and K̄A interactions have gained sub-
stantial interest during the last two decades. It is known
from the time-honored Martin analysis [1] that the
isoscalar s-wave K−N scattering length is large and re-
pulsive, Rea0 = −1.7 fm, while the isovector length is
moderately attractive, Rea1 = 0.37 fm. It is clear that
such a strong repulsion in the K̄N isoscalar channel leads
also to a repulsion in the low-energy K−p system, since
ReaK−p = 0.5Re(a0+ a1) = −0.74 fm. It should be noted
that Conboy’s analysis [2] of low-energy K̄N data gives a
solution with Rea0 = −1.03 fm and Rea1 = 0.94 fm, that
also results in repulsion in the K−p channel, but with
substantially smaller strength, ReaK−p = −0.05 fm. Data
from KEK show that the energy shift of the 1s level of
kaonic hydrogen is repulsive [3,4]. Very recent results for
kaonic hydrogen from the DEAR experiment [5] also in-
dicate a repulsive energy shift. However, the consistency
of the bound state with the scattering data can be ques-
tioned, as first pointed out in ref. [6].

Nevertheless, it is possible that the actual K−p in-
teraction is attractive if the isoscalar Λ(1405)-resonance
is a bound state of the K̄N system [7,8]. A fundamental
reason for such a scenario is provided by the leading-order
term in the chiral expansion for theK−N amplitude which
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is attractive. New developments in the analysis of the K̄N
interaction based on chiral Lagrangians can be found in
refs. [9–12]. These results provide further support for the
description of the Λ(1405) as a meson-baryon bound state.
More recently, it has even been argued that there are in-
deed two poles in the complex plane in the vicinity of the
nominal Λ(1405) pole [13]. For recent evidence to support
this scenario, see, e.g., [14]. A different view seems to be
taken in ref. [15].

Such a non-trivial dynamics of the K̄N interaction
leads to very interesting in-medium phenomena in inter-
actions of anti-kaons with finite nuclei as well as with
dense nuclear matter, including neutron stars, see, e.g.,
refs. [16–21].

Recently, exotic few-body nuclear systems involving
the K̄-meson as a constituent were studied by Akaishi
and Yamazaki [22]. They proposed a phenomenological
K̄N potential model, which reproduces the K−p and
K−n scattering lengths from the Martin analysis [1],
the kaonic hydrogen atom data from KEK [3,4] and
the mass and width of the Λ(1405)-resonance. The K̄N
interaction in this model is characterized by a strong
I = 0 attraction, which allows the few-body systems
to form dense nuclear objects. As a result, the nuclear
ground states of a K− in (pp), 3He, 4He and 8Be, were
predicted to be discrete states with binding energies of
48, 108, 86 and 113 MeV and widths of 61, 20, 34 and
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38 MeV, respectively. More recent work on this subject
can be found, e.g., in refs. [23,24].

Furthermore, very recently a strange tribaryon
S0(3115) was detected in the interaction of stopped
K−-mesons with 4He [25]. Its width was found to be less
than 21 MeV. In principle, this state may be interpreted
as a candidate of a deeply bound state (K̄NNN)Z=0

with I = 1, I3 = −1. However, the observed tribaryon
S0(3115) is about 100 MeV lighter than the predicted
mass. Moreover, in the experiment an isospin-1 state was
detected at a position where no peak was predicted. It
was discussed in ref. [26] that such discrepancy can be
resolved by improvement of the model [22]. Nevertheless
further searches for bound kaonic nuclear states as well as
new data on the interactions of K̄-mesons with lightest
nuclei are thus of great importance.

Up to now the s-waveK−α scattering length, which we
denote as A(K−α), has not been measured and relevant
theoretical calculations have not yet been done. In this
paper we present a first calculation of A(K−α) within the
framework of the multiple-scattering approach (MSA).

We investigate the pole position of the K−α scattering
amplitude within the zero-range approximation (ZRA) in
order to find out whether the formation of a bound state
in the K̄α system is possible. Furthermore, we discuss the
possibility to measure the K̄α scattering length through
the K̄α final-state interaction (FSI). Recently it was pro-
posed to measure the reaction dd → αK+K− near the
threshold at COSY-Jülich [27]. We apply our approach to
calculate the K−α FSI effect in this reaction and demon-
strate that the K−α invariant-mass distribution is sen-
sitive enough to the K−α FSI and may be used for the
determination of the s-wave K−α scattering length.

Our paper is organized as follows: In sect. 2 we cal-
culate the K−α scattering length within the MSA and
determine the pole position of the amplitude in the zero-
range approximation. In sect. 3 an analysis of the FSI in
the reaction dd→ αK+K− is considered. Our conclusions
are given in sect. 4.

2 The K−α scattering length

2.1 Multiple-scattering formalism

To calculate the s-wave K−α scattering length as well as
the FSI enhancement factor, we use the Foldy-Brueckner
adiabatic approach based on the multiple-scattering
(MS) formalism [28]. Note that this method has already
been used for the calculation of the enhancement factor
in the reactions pd → 3Heη [29], pn → dη [30] and
pp→ dK̄0K+ [31].

In the Foldy-Brueckner adiabatic approach, the con-
tinuum K−α wave function, which is defined at fixed co-
ordinates of the four nucleons in 4He, can be written as
the sum of the incident plane wave of the kaon and waves
emerging from the four fixed scattering centers. Keeping
only the s-wave contribution, we can express the total

wave function Ψk through the j-channel wave functions
ψj(rj) in the following way:

Ψk(rK− ; r1, r2, r3, r4) = eik·rK−

+
4
∑

j=1

tK−Nj

e
ikRj

Rj
ψj(rj), (1)

where Rj = |rK− − rj | and the t-matrix, tK−Nj
, is related

to the elastic scattering amplitude fK−N via [30,31]

tK−N (kK−N ) =
(

1 +
mK−

m

)

fK−N (kK−N ), (2)

withm (mK−) the nucleon (charged-kaon) mass, and kK̄N
is the modulus of the relative K̄N momentum. Note that
we use the unitarized scattering length approximation for
the latter, i.e.

f IK̄N (kK̄N ) =
[

(aIK̄N )−1 − ikK̄N
]−1

, (3)

where I is the isospin of the K̄N system. For each scat-
tering center j an effective wave ψj(rj) is defined as the
sum of the incident plane wave and the waves scattered
from the three other centers,

ψj(rj) = eik·rj +
∑

l 6=j

tK−Nl

e
ikRjl

Rjl
ψl(rl) , (4)

where Rjl = |rl − rj |. Therefore, the channel wave func-
tions ψj(rj) can be found by solving the system of the
four linear equations (4).

To obtain the FSI factor we calculate the total wave
function Ψk given by eq. (1) at rK− =

∑4

j=1
rj = 0 and

average it over the coordinates of the nucleons rj in 4He.
Thus, the FSI enhancement factor is [28]

λMS(kK−α)=

∣
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〈

Ψqlab
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rK−=

4
∑

j=1
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〉
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∣
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2

.

(5)

For the nuclear density function we use the factorized form

|Φ(r1, r2, r3, r4)|
2
=

4
∏

j=1

ρj(rj) , (6)

where the single-nucleon density is taken in Gaussian form
as

ρ(r) =
1

(π R2)3/2
e−r

2/R2

, (7)

with R2/4 = 0.62 fm2. Note that the independent particle
model formulated by eqs. (6), (7) provides a rather good
description of the 4He electromagnetic form factor up to
momentum transfer q

2 = 8 fm−2 [32].
The integration in eq. (5) over the nucleon coordi-

nates rj was performed using the Monte Carlo method.
This approach provides us with the possibility to include
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Table 1. The K−α scattering length for various sets of the elementary K̄N scattering lengths a(K̄N) (I = 0, 1).

Set Reference a0(K̄N) (fm) a1(K̄N) (fm) A(K−α) (fm)

1 [34] −1.59 + i0.76 0.26 + i.57 −1.80 + i0.90

2 [34] −1.61 + i0.75 0.32 + i0.70 −1.87 + i0.95

3 [7] −1.57 + i0.78 0.32 + i0.75 −1.90 + i0.98

4 [2] −1.03 + i0.95 0.94 + i0.72 −2.24 + i1.58

5 [11] −1.31 + i1.24 0.26 + i0.66 −1.98 + i1.08

all configurations of the nucleons in 4He. Within this
method we can also take into account in eq. (1) the de-
pendence of the tK−Nj

amplitude on the type of nucleonic
scatterer, i.e. proton or neutron. Note that the simple ver-
sion of the multiple-scattering approach used in ref. [33]
can be applied only to the case of identical scatterers.

The s-waveK−α scattering length can be derived from
the asymptotic expansion of eq. (1) at rK− →∞ and it is

A(K−α)=
mα

mα +mK−

〈

4
∑

j=1

tK−N ψj(rj)

〉

∣

∣

∣

∣

∣

∣∑

4

j=1
rj=0

,

(8)

with mα the α-particle mass. Here the procedure of av-
eraging over the coordinates of the nucleons is similar to
eq. (5).

2.2 S-wave scattering length and the pole position of
the amplitude in the zero-range approximation

The basic uncertainties of the MSA calculations are given
by the next-to-leading–order model corrections such as re-
coil corrections, contributions from inelastic double- and
triple-scattering terms, etc. and due to the uncertainties
of the elementary I = 0 and I = 1 K̄N scattering lengths.
The calculations of the K−α scattering length were done
for five sets of parameters for the K̄N lengths shown in
the table 1. Here we used the results from a K-matrix
fit (Set 1) and a separable fit (Set 2) [34]. We also study
the constant scattering length fit (CSL) given by Dalitz
and Deloff [7], which we denoted as Set 3 and the CSL fit
from Conboy [2] (Set 4). The recent predictions for K̄N
scattering lengths based on the chiral unitary approach of
ref. [11] are denoted as Set 5.

The results of our calculations are listed in the last
column of table 1. These results are very similar for the
Sets 1–3 giving the real and imaginary parts of the scat-
tering length A(K−α) within the range −1.8, . . . ,−1.9 fm
and 0.9, . . . , 0.98 fm, respectively. The results for Set 4 are
quite different: ReA(K−α) = −2.24 fm and ImA(K−α) =
1.58 fm. Furthermore, our calculations with Set 5 are close
to the results obtained with Sets 1–3.

Unitarizing the constant scattering length, we can re-
construct the K̄α scattering amplitude within the zero-
range approximation (ZRA) as

fK̄α(k) =
[

A(K̄α)−1 − ik
]−1

, (9)

where k = kK̄α is the relative momentum of the K−α
system. The denominator of the amplitude of eq. (9) has
a zero at the complex energy

E∗ = ER −
1

2
iΓR =

k2

2µ
, (10)

where ER and ΓR are the binding energy and width of the
possible K−α resonance, respectively. Here µ is reduced
mass of the system with α mass taken as 3.728 GeV.

For Set 1 and Set 4 we find a pole at the com-
plex energies of E∗ = (−6.7 − i18/2) MeV and E∗ =
(−2.0− i11.3/2) MeV, respectively. The calculations with
Set 5 also result in a loosely bound state, E∗ = (−4.8 −
i14.9/2) MeV. Note that assuming a strongly attrac-
tive phenomenological K̄N potential, Akaishi and Ya-
mazaki [22] predicted a deeply bound K̄α state at E∗ =
(−86− i34/2) MeV, which is far from our solutions. This
problem can be clarified assuming that the loosely and
deeply bound states are different eigenvalues of the K̄α
effective Hamiltonian. Our model for the K̄α scatter-
ing amplitude is valid only near the threshold, i.e. when
kA(K̄α)¿ 1. The ZRA cannot be applied for the descrip-
tion of deeply bound states when the pole of the scattering
amplitude is located far away from the threshold. If the
same procedure were applied to the K− 3H system, we
would find a similar loosely bound state. This state to-
gether with recently discovered deeply bound state, the
S0(3115), can be considered as different eigenvalues of the
K− 3H effective Hamiltonian. In any case it is very im-
portant to measure the s-wave K̄α scattering length ex-
perimentally and to clarify the situation concerning the
possible existence of bound K̄α states.

3 The reaction dd→ αK−K+ near threshold

and the K−α final-state interaction

It is well known [27,35] that the reaction

dd→ αK−K+ (11)

provides an opportunity to study I = 0 mesonic reso-
nances in the K−K+ sector.

At the same time, near the reaction threshold it might
be sensitive to the K−α final-state interaction. Here we
study whether it is possible to evaluate the s-wave K−α
scattering length from the K−α final-state interaction.
A similar evaluation of the dK̄0 FSI and relevant scat-
tering length was done in our previous study [36] of the
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Fig. 1. The K−α FSI enhancement factor λMS(k), eq. (5), as
a function of the relative momentum k of the K−α system.
The solid lines in the lower and upper part of the figure show
our calculations with Set 1 and Set 4 for the K̄N scattering
lengths, respectively. The dashed lines illustrate the Watson-
Migdal enhancement factor normalized to λMS(k) at k = 0.

pp → dK̄0K+ reaction. As has been stressed in ref. [37]
this reaction should be very sensitive to the K̄0d FSI.
Through our analysis we extracted a new limit for the
K−d scattering length from the K̄0d invariant-mass spec-
trum from the pp → dK̄0K+ reaction measured recently
at COSY-Jülich [38].

It is clear that the FSI effect is essential at low invari-
ant masses of the interacting particles, where the relative
s-wave contribution is expected to be dominant. One can
also safely assume that the range of the FSI is much larger
as compared to the range of the basic hard interaction re-
lated to the production of the K̄K-meson pair. This means
that the basic production amplitude and the FSI term can
be factorized [28,33,39–42] and the FSI can be taken into
account by multiplying the production operator by the
FSI enhancement factor defined by eq. (5).

Figure 1 shows the dependence of the K−α FSI en-
hancement factor λMS(k) given by eq. (5) on the relative
momentum of the K−α system, k. The solid lines in the
upper (lower) part of fig. 1 show the results obtained with
Set 1 (Set 4) for the K̄N scattering length. The calcula-
tions with Set 1 result in λMS(k) ' 0.55 at k = 0 and the
FSI factor smoothly decreases with k. The calculations
with Set 4 give λMS(k) > 1 at k = 0 and show a much
stronger k-dependence.

Following the Watson-Migdal approximation [43,44]
the k-dependence of the enhancement factor is generally

Fig. 2. The K−α FSI factor averaged over the three-body
phase space of the reaction dd→ αK+K− as a function of the
excess energy. The solid and dashed lines show the calculations
with parameters of Set 1 and 4, respectively.

described in terms of the on-shell scattering amplitude as

λWM =
C

|1− ikAK̄α|
2
, (12)

where C is the normalization constant.
Now, the dashed lines in fig. 1 illustrate the Watson-

Migdal enhancement factor normalized to λMS(k) at k=0.
The upper and lower parts of fig. 1 are calculated using
the scattering lengths AK̄α obtained with parameters of
Set 1 (Set 4), respectively, and listed in table 1. It is clear
that the momentum dependence of λWM(k) and λMS(k)
is different at different k. However, the absolute difference
between λWM(k) and λMS(k) at k ≤ 100 MeV/c is rela-
tively small.

Obviously, the energy dependence of the total cross-
section for the dd→ αK+K− reaction is also distorted by
the K−α FSI. In fig. 2 we show the enhancement factor
λMS(k) averaged over the 3-body phase space as a function
of the excess energy ε for the dd → αK+K− reaction.
The results for Sets 2, 3 and 5 are practically the same as
for Set 1. It is interesting to note that there is essentially
enhancement of the cross-section at small ε for Set 4, while
for Set 1 we obtain suppression. The experiment would
provide only a convolution of the production amplitude
and FSI factor. Since the production amplitude is model
dependent it is difficult to extract the absolute value of
the FSI factor from the data. However, the dependence of
the FSI on the relative momentum k is very well defined
because the dependence of the basic hard interaction on
k can be neglected at small k. According to ref. [27] the
total cross-section of the reaction dd → αK+K− might
be about 0.4, . . . , 1 nb at ε = 40, . . . , 50 MeV.

Finally, we calculated the K−α invariant-mass spectra
at excess energies ε = 30 and 50 MeV which are shown in
fig. 3. The solid lines show the calculations for the pure
phase space, i.e. for the constant production amplitude
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Fig. 3. The invariant K−α mass spectra produced in the
dd→ αK+K− reaction at excess energies 30 and 50 MeV. The
solid lines describe the pure phase space distribution, while the
dashed and dotted lines show our calculations with the K−α

FSI given by parameters of Set 1 and 4, respectively.

and neglecting FSI. The dashed and dotted lines in fig. 3
show the results obtained with the K−α FSI calculated
with the parameters of Set 1 and 4, respectively. All lines
in each figure are normalized to the same value, given by
the reaction cross-section at a certain excess energy. At
ε = 50 MeV the invariant-mass spectra are normalized to
the dd → αK+K− cross-section of 1 nb. It is clear that
the FSI significantly changes the K−α mass spectra. The
most pronounced effect is observed at low invariant masses
available in the first 10 MeV bin.

To draw quantitative conclusions, one can compare the
ratio of the cross-sections at the lowest K−α invariant
masses, within the first 10 MeV bin, calculated with and
without FSI. We found that this ratio R = 1.26, . . . , 1.34
at ε = 30 MeV, 1.49, . . . , 1.56 at ε = 50 MeV and
1.84, . . . , 2.18 at ε = 100 MeV. Here the limits of the ratio
at each excess energy are given by the calculations with
the K̄N scattering length from Set 1 and Set 4. With these
estimates it is clear that the reasonable determination of
theK−α scattering length requires sufficient statistical ac-
curacy at K−α invariant masses below 4.23 GeV, at least

100 events. Such a high-precision experiment apparently
can be done at COSY.

4 Conclusions

The findings of this study can be summarized as follows:

– We have investigated the s-wave K−α scattering
length and the K−α FSI enhancement factor within
the Foldy-Brueckner adiabatic approach based on the
multiple-scattering formalism. We have studied uncer-
tainties of the calculations due to the elementaryK−N
scattering length presently available. The resulting s-
wave K−α scattering lengths for the various input pa-
rameters are collected in table 1.

– Through the determination of the pole position of
the K−α scattering amplitude within the zero-range
approximation, we found a loosely bound state with
binding energy ER = −2, . . . ,−7 MeV and width
ΓR = 11, . . . , 18 MeV. Our result for the loosely bound
state can be considered as a different eigenvalue of the
K−α effective Hamiltonian as compared to the predic-
tions of Akaishi and Yamazaki [22].

– We have analyzed the K−α FSI in the reaction dd→
αK+K− and discussed the possibility to evaluate the
K−α scattering length from the K−α invariant-mass
spectra. We have demonstrated that the measurement
of theK−α mass distribution near the reaction thresh-
old may provide a new tool for the determination of
the s-wave K−α scattering length.

– Furthermore, we have investigated the momentum de-
pendence of the enhancement factor λMS(k) calculated
within the MSA and compared it with the one obtained
utilizing the Watson-Migdal formalism. It was found
that the absolute difference between both calculations
is relatively small at momenta q ≤ 100 MeV/c.

It is important to stress that for kaonic helium atoms,
energy shifts can be measured for the 2p state and widths
for the 2p and 3d states. The np→ 1s transitions for 4He
cannot be observed since the absorption from the p states
is almost complete [45]. Therefore, the possibility to deter-
mine the s-wave K̄α scattering length from experiments
with kaonic atoms is questionable. With this respect a
measurement at COSY provides a unique opportunity to
determine the s-wave K−α scattering length.
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